## A NEW ANTITUMOR ANTIBIOTIC, BACTOBOLIN PRODUCED BY *PSEUDOMONAS*

Sir:

A new chlorine-containing antibiotic, bactobolin, has been found in the culture broth of *Pseudomonas* BMG13-A7. Bactobolin inhibits the growth of Gram-positive and Gram-negative bacteria, and experimental animal tumors, and is structurally related to actinobolin produced by *Streptomyces griseoviridis* var. *atrofaciens*<sup>1,2)</sup>.

Pseudomonas BMG13-A7 was cultured at 27°C for 24 hours on a rotatory shaker (180 rpm) in a 500-ml Erlenmeyer flask which contained 110 ml of a medium consisting of maltose 1.5%, yeast extract 0.3%, NZ-amine (A type) 1.0% and NaCl 0.3% (pH 7.4). This culture (110 ml) was inoculated into 15 liters of the same medium in a 30-liter jar fermentor and the fermentation was carried out at 27°C under agitation at 250 rpm and aeration at 15 liters/minute. The 40hour fermented broths in two fermentors were combined and centrifuged at 10,000 rpm to yield a supernatant (27 liters, 52 µg/ml). Concentrations of bactobolin were determined by the cylinder plate method against Escherichia coli K-12 using crystalline bactobolin  $(1.000 \ \mu g/ml)$ as an assay standard.

The antibiotic in the supernatant was adsorbed on a column of Amberlite XAD-2 resin (1,500 ml) and eluted with 50% aqueous methanol. The active eluate (4,270 ml) was concentrated to dryness and a crude powder (13.4 g, 71  $\mu$ g/mg) was obtained. The crude powder in water (20 ml) was purified by column chromatography on Amberlite CG-50 (Type I, 70% NH<sub>4</sub><sup>+</sup>, 600 ml) developed with water to give an yellowish powder (1.7 g, 489  $\mu$ g/mg). The powder was further purified by repeated chromatography, yielding a colorless powder (940 mg, 719  $\mu$ g/mg) of bactobolin. Crystallization of the powder from a mixture of water (1.5 ml) and ethanol (0.5 ml) gave colorless needles of bactobolin (604 mg, 1,000  $\mu$ g/mg).

Bactobolin (1) shows mp  $196 \sim 197^{\circ}C$  (decomp.),  $[\alpha]_{D}^{24} - 26.7^{\circ}$  (c 1.0, water), pKa' 7.3 Anal. calcd. for  $C_{14}H_{20}N_2O_6Cl_2$ : and 8.4. C 43.88, H 5.26, N 7.31, O 25.05. Found: C 43.57, H 5.22, N 7.33, O 24.99. The molecular formula is derived by FD-MS of 1 (m/e)382, M<sup>+</sup>) and by high-resolution MS of mono-N-acetylbactobolin (2) (m/e 424.0789, calcd.)mol. wt. for  $C_{16}H_{22}N_2O_7Cl_2$ : 424.0801). UV max.: 276 nm (e 10,000) in water, 262 nm (e 11,200) in 0.1 N HCl and 287 nm (e 17,000) in 0.1 N NaOH. The IR spectrum is shown in Fig. 1. The PMR chemical shifts are represented in Table 1. The CMR spectra (D<sub>2</sub>O) shows signals of 14 carbons (184.7s, 173.9s, 167.6s, 85.3s, 84.3s, 75.9d, 72.6d, 70.1d, 50.0d, 47.7d, 42.0d, 40.3t, 19.1g and 19.0g). The antibiotic 1 gives positive ninhydrin, RYDON-SMITH and 2,4dinitrophenylhydrazine reactions, and is soluble in water and methanol. By high-voltage paper electrophoresis with 3,500 V for 15 minutes in formic acid - acetic acid - water (1:3:36, v/v), the antibiotic 1 moves to the cathode with Rm (relative mobility to alanine) 0.68. Rf values of thin-layer chromatography on Silica gel G (Merck, Art. 5715) developed with ethyl acetate -



Fig. 1. The IR spectrum of bactobolin in KBr.

| Proton              | δ ppm (JHz)             |         |               |         |               |
|---------------------|-------------------------|---------|---------------|---------|---------------|
|                     | 1                       |         | 2             |         | 6             |
| 3′-H <sub>3</sub>   | 1.97 d (7)              | 1.85 d  | (7)           | 1.90 d  | (7)           |
| 3-CH <sub>3</sub>   | 2.14 s                  | 2.23 s  |               | 2.21 s  |               |
| N-Ac                |                         | 2.52 s  |               | 2.52 s  |               |
| 7-Hax.              | 2.73 dd (18, 10.5)      | 2.96 m  | (19, 10, 2.2) | 2.96 m  | (18, 10, 2.5) |
| 7-Heq.              | 3.23 dd (18, 6.5)       | 3.47 dd | (19, 7)       | 3.70 dd | (18, 6.5)     |
| 4a-H                | ~3.5 m                  | ~3.5 m  | (3)           | ~3.6    |               |
| 5-H                 | 3.63 t (9.5)            | 3.74 t  | (9)           | 3.71 t  | (9)           |
| OCH <sub>3</sub>    |                         |         |               | 4.43 s  |               |
| 6-H                 | ~4.4 m (10.5, 9.5, 6.5) | 4.47 m  | (10, 9, 7)    | ~4.4    |               |
| 2′-Н                | 4.50 q (7)              | 4.81 q  | (7)           | 4.80 q  | (7)           |
| 4-H                 | 5.29 d (2.5)            | 5.38 d  | (3)           | 5.34 d  | (2.5)         |
| 3-CHCl <sub>2</sub> | 6.58 s                  | 6.71 s  |               | 6.64 s  |               |

Table 1. PMR chemical shifts of bactobolin (1), mono-N-acetylbactobolin (2) and mono-N-acetylbactobolin methyl ether (6).

Chemical shifts,  $\delta(ppm)$  were measured in D<sub>2</sub>O using TMS as the external reference.

methanol - water (8:5:1, v/v) and with ethyl acetate - acetic acid - water (3:1:1, v/v) are Rf 0.26 and Rf 0.42, respectively.

Acid hydrolysis of 1 with 6 N HCl under reflux for 3 hours followed by column chromatography on Dowex 1-X2 (OH-) eluted with 0.5 N HCl gave crystalline L-alanine hydrochloride [a little racemized:  $[\alpha]_{D}^{24} + 3.7^{\circ}$  (c 1.0, 1 N HCl)], and hydrochlorides of a phenol derivative (3) and an alanyl-phenol derivative (4). The phenol derivative 3 was derived into the N,O-diacetyl derivative (5) by treatment with acetic anhydride in pyridine overnight at room temperature, mp  $65 \sim 70^{\circ}$ C,  $[\alpha]_{D}^{24} - 41^{\circ}$  (c 0.5, methanol), MS: m/e 333 (M<sup>+</sup>), PMR (CDCl<sub>3</sub>): δ 1.19 (3H, s, C-CH3), 1.98 (3H, s, N-Ac), 2.29 (3H, s, O-Ac), 3.29 (1H, broad, OH), 5.36 (1H, d, J=9.5 Hz, N-CH), 5.88 (1H, s, CHCl<sub>2</sub>), 6.58 (1H, broad d, J=9.5 Hz, NH) and 7.0~7.3 (4H, 1,3-disubstituted benzene), and the structure of 5 was shown to be 3-(1-acetamido-2-dichloromethyl-2-hydroxypropyl)-1-acetoxybenzene.

Treatment of **1** with acetic anhydride in methanol overnight at room temperature afforded crystalline mono-N-acetylbactobolin **2**, mp 242~ 243°C (decomp.),  $[\alpha]_D^{24} - 32^\circ$  (c 1.0, water). By treatment with diazomethane, **2** was easily converted into the methyl ether (**6**), mp 151~158°C (decomp.),  $[\alpha]_D^{26} - 31^\circ$  (c 1.0, water), MS: m/e438 (M<sup>+</sup>). The presence of an enolic hydroxyl group in **2** was confirmed by formation of the methyl ether.



The PMR chemical shifts of **2** and **6** are represented in Table 1. A partial structure  $CH_2$ -CHCHCHCH and its configurations (axial or equatorial assignment of ring protons) were shown by the PMR spectra of **1**, **2** and **6**. The PMR spectra of **2** and **6** are very similar to those of N-acetylactinobolin and its methyl ether<sup>2</sup>). The long-range homoallylic coupling between 4a-H and 7-Hax. was also observed in the PMR spectra of **2** and **6** (2.2 and 2.5 Hz, respectively). The NOE experiments of **2** in D<sub>2</sub>O irradiating 3-CH<sub>3</sub> ( $\delta$  2.23) resulted in enhance-



ment of 10.5% of the integrated area of 4a-H ( $\delta$  3.5), and the saturation of 4a-H showed enhancements of 8% and 12% of the integrated areas of 3-CH<sub>3</sub> and 6-H ( $\delta$  4.47), respectively. The results indicate that (6-H)-(4a-H) and (4a-H)-(3-CH<sub>3</sub>) must be all in 1,3-diaxial arrangements. By application of the CuAm method reported by S. UMEZAWA *et. al.*<sup>3)</sup>, **2** and **6** showed positive contributions ( $\Delta$ [M]<sub>CuAm</sub> + 1260° and + 1300°, respectively) and thus the absolute configurations of **2** and **6** were determined to be 5*R* and 6*R*.

From the foregoing results, the absolute structure of bactobolin (1) can be proposed to be (3S, 4R,4aR,5R,6R)-4-(L-alanylamino)-3-(dichloromethyl)-3,4,4a,5,6,7-hexahydro-5,6,8-trihydroxy-3methyl-1*H*-2-oxa-1-naphthalenone.

Bactobolin shows a strong antibacterial activity, as shown in Table 2. A marked prolongation effect in the survival period of mice implanted with the mouse leukemia L-1210 cells has been observed after treatment with bactobolin. The antitumor effects of bactobolin will be reported elsewhere. Acute LD<sub>50</sub> of bactobolin in mice by the intravenous injection was  $6.25 \sim 12.5$  mg/kg.

## Acknowledgement

This work was partly supported by a grant-in-aid for cancer research from the Ministry of Education, Science and Culture in Japan.

> Shinichi Kondo Yukio Horiuchi Masa Hamada Tomio Takeuchi Hamao Umezawa

| Test organisms                | Minimum<br>inhibitory<br>concentrations<br>(µg/ml) |  |  |
|-------------------------------|----------------------------------------------------|--|--|
| Staphylococcus aureus FDA209P | 0.39                                               |  |  |
| Staphylococcus aureus Smith   | 0.39                                               |  |  |
| Micrococcus flavus FDA16      | < 0.20                                             |  |  |
| Sarcina lutea PCI1001         | < 0.20                                             |  |  |
| Bacillus anthracis            | 12.5                                               |  |  |
| Bacillus subtilis PCI219      | 0.78                                               |  |  |
| Bacillus subtilis NRRL B-558  | 0.39                                               |  |  |
| Bacillus cereus ATCC10702     | 6.25                                               |  |  |
| Corynebacterium bovis 1810    | 0.20                                               |  |  |
| Escherichia coli NIHJ         | 0.78                                               |  |  |
| Escherichia coli K-12         | 3.13                                               |  |  |
| Escherichia coli K-12 ML1629  | 6.25                                               |  |  |
| Escherichia coli K-12 ML1630  | 3.13                                               |  |  |
| Klebsiella pneumoniae PCI602  | 6.25                                               |  |  |
| Shigella dysenteriae JS11910  | < 0.20                                             |  |  |
| Shigella flexneri 4b JS11811  | 1.56                                               |  |  |
| Shigella sonnei JS11746       | 3.13                                               |  |  |
| Salmonella typhi T-63         | 6.25                                               |  |  |
| Salmonella enteritidis 1891   | 3.13                                               |  |  |
| Proteus vulgaris OX19         | 0.39                                               |  |  |
| Serratia marcescens           | >100                                               |  |  |
| Pseudomonas aeruginosa A3     | 100                                                |  |  |
| Pseudomonas aeruginosa No. 12 | >100                                               |  |  |

Table 2. The antimicrobial spectrum of bactobolin

Institute of Microbial Chemistry 14-23, Kamiosaki 3-chome, Shinagawa-ku, Tokyo 141, Japan

(Received July 30, 1979)

## References

- HASKELL, T. H. & Q. R. BARTZ: Actinobolin, a new broad-spectrum antibiotic. Isolation and characterization. Antibiot. Ann. 1958/1959: 505~509, 1959
- ANTOSZ, F. J.; D. B. NELSON, D. L. HERALD, Jr. & M. E. MUNK: The structure and chemistry of actinobolin. J. Am. Chem. Soc. 92: 4933~4942, 1970
- 3) UMEZAWA, S.; T. TSUCHIYA & K. TATSUTA: Studies of aminosugars. XI. Configurational studies of aminosugar glycosides and aminocyclitols by a copper complex method. Bull. Chem. Soc. Jap. 39: 1235~1243, 1966